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Abstract
Background Human breath contains volatile organic compounds (VOCs) that are biomarkers of breast cancer. We investi-
gated the positive and negative predictive values (PPV and NPV) of breath VOC biomarkers as indicators of breast cancer 
risk.
Methods We employed ultra-clean breath collection balloons to collect breath samples from 54 women with biopsy-proven 
breast cancer and 124 cancer-free controls. Breath VOCs were analyzed with gas chromatography (GC) combined with 
either mass spectrometry (GC MS) or surface acoustic wave detection (GC SAW). Chromatograms were randomly assigned 
to a training set or a validation set. Monte Carlo analysis identified significant breath VOC biomarkers of breast cancer in 
the training set, and these biomarkers were incorporated into a multivariate algorithm to predict disease in the validation 
set. In the unsplit dataset, the predictive algorithms generated discriminant function (DF) values that varied with sensitivity, 
specificity, PPV and NPV.
Results Using GC MS, test accuracy = 90% (area under curve of receiver operating characteristic in unsplit dataset) and 
cross-validated accuracy = 77%. Using GC SAW, test accuracy = 86% and cross-validated accuracy = 74%. With both assays, 
a low DF value was associated with a low risk of breast cancer (NPV > 99.9%). A high DF value was associated with a high 
risk of breast cancer and PPV rising to 100%.
Conclusion Analysis of breath VOC samples collected with ultra-clean balloons detected biomarkers that accurately pre-
dicted risk of breast cancer.

Keywords Breath · Breast cancer · Volatile organic compound · Biomarker

Introduction

The incidence of breast cancer in the United States was 
426.1 new cases per 100,000 population in 2012, and its 
prevalence was 0.32% in the screened population [1–3].
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An ideal screening test for a disease with such low 
prevalence should be accurate, painless, non-invasive and 
safe, but women undergoing screening mammography 
may experience discomfort, anxiety, radiation exposure, 
false-positive outcomes, and overtreatment [4, 5]. These 
limitations of mammography have stimulated interest in 
breath tests for breast cancer because they are intrinsically 
painless, safe and non-invasive, and their feasibility has 
been demonstrated with a variety of different analytical 
tools including gas chromatography mass spectrometry 
(GC MS) [6, 7], nanosensor arrays [8, 9], and sniffing 
dogs [10].

We have previously reported clinical studies in which 
analysis of volatile organic compounds (VOCs) in breath 
identified women with breast cancer [11–15]. The source of 
the breath biomarker VOCs may be carcinoma-associated 
fibroblasts in breast cancer stromal tissue (Fig. 1). These 
cells produce hydrogen peroxide, a powerful oxidant that 
induces oxidative stress and tumorigenic alterations in 
epithelial cells [16, 17]. The resulting peroxidation of ara-
chidonic acid and other polyunsaturated fatty acids in cell 
membranes liberates volatile n-alkanes (e.g. pentane, hex-
ane, and longer-chain alkanes) with a high vapor pressure 
that are exhaled in breath [18–20]. Breath VOCs biomarkers 
may also arise from induced polymorphic cytochrome p450 
mixed oxidase enzymes in breast tissues [21, 22].

We report here a study to evaluate the positive and nega-
tive predictive values (PPV and NPV) of breath VOC bio-
markers as indicators of breast cancer risk. Breath samples 
were collected with ultra-clean balloons that enabled col-
lection of uncontaminated breath VOC samples in doctors’ 
offices and outpatient clinics. Samples were analyzed by two 
different methods: GC MS to identify breath mass ion bio-
markers, and GC with surface acoustic wave detection (GC 
SAW) to detect breath biomarkers by their mass.

Methods and materials

Human subjects (Table 1)

We performed breath tests in women with biopsy-proven 
breast cancer and in asymptomatic controls. Clinical stud-
ies were performed at three sites: Saint Michael’s Medical 
Center, Newark, NJ, USA, Hackensack UMC Mountainside, 
Montclair, NJ, USA, and Universidad de Guadalajara & 
Instituto Jalisciense de Cancerologia, Guadalajara, Mexico. 
At each site, an Institutional Review Board approved the 
research. A physician explained the study to women aged 
18 years and older if they fulfilled the inclusion and exclu-
sion criteria, and asked them to gave written informed con-
sent to participate in the study.

FIBROBLASTS 
in cancer stroma

CANCER-
ASSOCIATED

FIBROBLASTS 

activation
HYDROGEN
PEROXIDE 

PUFA OXIDATION IN CELL
MEMBRANES 

arachidonic acid gains an
unpaired electron

SCISSION PRODUCTS 
lose the unpaired electrons 

VOLATILE ALKANES 
EXHALED IN BREATH

e.g. C5 pentane 
…C20 icosane

Fig. 1  Source of breath biomarkers in breast cancer: This hypotheti-
cal schema postulates that fibroblasts in the cellular stroma surround-
ing cancer cells are activated to cancer-associated fibroblasts that 
manufacture hydrogen peroxide. As a result, polyunsaturated fatty 
acids (PUFA) in cell membranes (e.g. arachidonic acid) are oxidized 
to free radicals with unpaired electrons. The downstream cascade of 

oxidation products (not shown) culminates in scission products that 
lose their unpaired electrons, with the liberation of volatile alkanes. 
These alkanes undergo subsequent biological transformations includ-
ing methylation to downstream volatile products with a high vapor 
pressure that are exhaled in the breath (references in text)
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Inclusion criteria

Women in the breast cancer group had untreated disease 
confirmed on breast biopsy. Women in the control group 
had a normal screening mammogram during the preceding 
6 months and no breast-related symptoms.

Exclusion criteria

Women were excluded from the study if they had any other 
known serious or potentially life-threatening disease, con-
current acute pulmonary disease (e.g. influenza, or pneu-
monitis), previous history of cancer of any site (excepting 
basal cell carcinoma of skin), or if they had received general 
anesthesia during the 10 days prior to the breath collection.

Ultra‑clean balloons (BreathBag™, Menssana 
Research Inc)

The device is shown in Fig. 2 left panel, and the detailed 
preparation method has been described [23]. In summary, 
an inflatable collection bag (e.g. a metallized plastic bal-
loon) was gently inflated with ultra-clean helium in a 
quantity sufficient to separate its walls, and a reservoir of 
activated charcoal was introduced through its neck. This 
reservoir may take different forms, e.g. a perforated tube 
filled with granules of activated charcoal, or fabric or paper 
impregnated with activated charcoal. Contaminant VOCs 
in the bag diffuse into the helium where the activated char-
coal captures them by sorbent trapping. Serial analysis of 
bag VOC contents with GC MS has shown that activated 
charcoal scavenging prior to collection of a breath sample 

Table 1  Human subjects: women in the breast cancer group had untreated biopsy-proven disease

The controls had a normal screening mammogram during the preceding 6 months and no breast-related symptoms. Mean age was higher in the 
breast cancer GC SAW group than in the normal controls, but this did not significantly affect the sensitivity or specificity of the breath test (see 
discussion in text)
*NS; **p < 0.01

GC MS GC SAW

No. subjects Mean age (years) No. subjects Mean age (years)

Breast cancer 54 60.4* 50 61.5**
Normal controls 124 57.0 70 54.6
Total 178 120

Recruitment site GC SAW Breast cancer Controls Total

Mexico 8 0 8
Montclair, NJ 28 23 51
Newark, NJ 14 47 61
Total 50 70 120

Fig. 2  Ultra-clean breath collection balloon. Balloon with activated 
charcoal reservoir (left hand panel): This figure shows the neck of the 
balloon with the indwelling reservoir, a paper strip impregnated with 
activated charcoal that captures > 99% contaminant VOCs by sorb-
ent trapping. The activated charcoal reservoir is removed from the 

balloon before collection of a breath sample. Collection of a breath 
sample (right panel). The breath donor inflates the balloon through a 
drinking straw with a single forced expiration to ensure that the sam-
ple comprises alveolar breath from deep in the lungs. The neck of the 
balloon is sealed with a knot prior to shipping for analysis
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removes approximately 99.9% of all contaminant VOCs that 
were initially detectable.

Breath sample collections

The activated carbon reservoir was removed from the device 
immediately prior to collecting a breath sample. The user 
inserted a drinking straw and inflated the bag with a com-
pleted forced expiratory exhalation, ensuring that the bag 
was flushed out with alveolar (deep lung) breath (Fig. 2, 
right panel). The bag is sealed with a knot tied in its neck, 
and sent to the laboratory for analysis.

Analysis of breath VOCs

Bags were heated to > 40 °C to volatilize condensed contents 
prior to analysis with two different methods.

GC MS analysis

A pump withdrew 700 ml breath from the bag through a 
dual-bedded sorbent trap (Carbotrap C and Carbopack C, 
Supelco Inc, Bellefonte, PA) in order to capture the con-
tained VOCs. Using automated instrumentation, VOCs were 
thermally desorbed from the sorbent trap, cryogenically con-
centrated, and assayed by GC MS (Perkin Elmer Clarus 500, 
Waltham, MA). A known quantity of bromofluorobenzene 
(BFB) internal standard was automatically loaded on to all 
samples in order to normalize the abundance of VOCs and 
to facilitate alignment of chromatograms. The method has 
been described [24].

GC SAW analysis

A portable analyzer (zNose model 4200, Electronic Sensor 
Technology, Inc, Newbury Park, CA) withdrew 70 ml breath 
from the bag onto an internal sorbent trap in order to cap-
ture the contained VOCs. The concentrated sample was then 
thermally desorbed onto a GC column coupled to a SAW 
detector. The method has been described [14]. The analyzer 
was calibrated daily with an external standard, a mixture of 
C6 to C22 n-alkanes (Restek Corporation, Bellefonte, PA 
16823, USA).

Analysis of data

The methods have been described [14, 15]

GC MS chromatograms were processed to generate a table of 
ion masses with their intensities and retention times normal-
ized to BFB. Aligned data were binned into a series of 5 s 
retention time segments. We ranked mass ions as candidate 
biomarkers of breast cancer by comparing their intensity 

values in subjects with biopsy-proven breast cancer to can-
cer-free controls. In each 5 s time segment, the diagnostic 
accuracy of each mass ion was ranked according to the frac-
tion of correct binary patient category classifications for an 
optimally fixed abundance cutoff. We then employed mul-
tiple Monte Carlo simulations to select the mass ion bio-
markers in each time segment that identified breast cancer 
with greater than random accuracy, and these biomarkers 
were entered into a multivariate predictive algorithm using 
weighted digital analysis (WDA).

GC SAW chromatograms were aligned and binned into a 
time series of data segments derived from the SAW detector 
signal (3013 scans/min), and the diagnostic accuracy of each 
data segment was ranked according to the fraction of cor-
rect binary patient category classifications for an optimally 
fixed cutoff of detector signal differentials. Biomarkers that 
identified breast cancer with greater than random accuracy 
were identified in each time segment In the same fashion as 
described above for GC MS chromatograms, and entered 
into a multivariate predictive algorithm.

Cross‑validation of predictive models

The same method was employed for GC MS and GC SAW 
data. The predictive model was trained using multivariate 
weighted digital analysis (WDA) and Monte Carlo simula-
tion [25]. The WDA model was validated with tenfold cross 
validation [14] and leave-one-out cross validation. For ten-
fold cross validation, chromatograms from subjects with 
breast cancers and cancer-free controls were partitioned ran-
domly into 10 “folds”. In 10 trials, predictive models were 
trained on ninefolds and validated on the remaining fold. 
The training and validation AUCs were averaged, and their 
ROCs were interpolated along the specificity dimension and 
averaged, to produce the reported AUCs and ROC curves. In 
each training set, multiple Monte Carlo simulations identi-
fied the candidate biomarkers that individually performed 
better than p < 0.05 compared to modeling against random 
reclassification of each subject as one with or without breast 
cancers. Markers were selected by a cutoff on the fraction of 
chromatograms that they classified correctly. In each case, 
the cutoff was selected that produce the best overall WDA 
training AUC while performing at better than p < 0.05 in 
Monte Carlo simulation.

Determination of positive and negative predictive values 
(PPV and NPV)

The predictive algorithms derived from the unsplit GC 
MS and GC SAW data sets were employed to generate dis-
criminant function (DF) values that were correlated with 
the breath test’s sensitivity, specificity, PPV, and NPV, 
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employing a US prevalence of breast cancer of 0.32% in the 
screening population [1–3].

Results

Human subjects

Characteristics and recruitment sites are shown in Table 1. 
None reported any discomfort or adverse effects associated 
with donation of a breath sample.

Sensitivity and specificity of breath tests (Fig. 3)

Receiver operating characteristic (ROC) curve in complete 
data sets (Fig. 3 left panel)

The breath VOCs that exhibited diagnostic accuracy supe-
rior to random behavior (identified by Monte Carlo statis-
tical analysis) were combined in a multivariate algorithm 
employing weighted digital analysis (WDA). The algorithms 
identified breast cancer in the unsplit data sets with 90% 
accuracy using GC MS analysis, and 86% accuracy with 
GC SAW.

Cross validation

The outcome of tenfold cross validation is shown in 
Fig. 3, right panel. The 10 multivariate predictive algo-
rithms derived in the training sets identified breast cancer 

predicted disease in the GC MS and GC SAW validation 
sets with accuracy of 77 and 74% respectively.

Predicted outcomes of algorithms

Figure 4 displays association of algorithm predictions 
(DF values) with sensitivity, specificity, and positive and 
negative predictive values of the GC MS and GC SAW 
algorithms. Low DF values were associated with a low 
risk of breast cancer NPV > 99.9% and high DF values 
were associated with a high risk of breast cancer (PPV 
rising to 100%).

Effects of age

Age of subjects is shown in Table 1. The AUC of age as 
a predictor was approximately 0.63. The respective stand-
ard error values of the AUC for the WDA model and age, 
trained on the full data set, were approximated with a for-
mula reported by Hanley and McNeil [26]. Using these 
standard error estimates, a t test was performed to compare 
the AUCs. For a single tailed test, the two AUCs were differ-
ent with p ≤ 0.00035. The 95% confidence interval of differ-
ence between the two AUCs was approximately 0.097–0.36, 
which provides high confidence that the model predicting 
breast cancer represents signal beyond the effects of age. 
Inclusion of age as an independent variable with the breath 
VOC dataset did not change the ROC curve AUC values.
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Fig. 3  Sensitivity and specificity of breath tests. Receiver operating 
characteristic (ROC) curves in complete data sets (left panel). This 
figure displays the sensitivity and specificity of the breath test for 
breast cancer. Multivariate algorithms that were derived from breath 
VOC biomarkers detected with GC MS (blue) and GC SAW (red). 
The area under curve (AUC) of the ROC curve indicates that the 

algorithms identified breast cancer with 90 and 86% accuracy, and 
using GC MS and GC SAW respectively. Cross-validation of ROC 
curves (right panel). In tenfold cross validation, the cancer and con-
trol chromatograms were partitioned randomly into 10 “folds” of 5 
cancers and 7 controls. In 10 trials, predictive models were trained on 
ninefolds and validated on the remaining fold
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Fig. 4  Variation in sensitivity, specificity and predictive value with 
discriminant function (DF). The predictive algorithms employed the 
input of a subject’s chromatogram to generate an output termed the 
discriminant function whose value varied with the risk of disease. 
Predictive values were derived from the sensitivity and specificity of 
the breath tests for breast cancer in the unsplit datasets, and the prev-
alence of breast cancer (0.32%) in a US screening population[1–3]. 

Sensitivity and specificity. Figure 4, top left and top right panels dis-
plays sensitivity and specificity of GC MS and GC SAW tests as they 
varied with DF. Positive predictive value (PPV) Fig.  4, left middle 
and right middle panels displays PPV of GC MS and GC SAW tests 
as they varied with DF. Negative predictive value (NPV) Fig. 4 bot-
tom left and bottom right panels displays NPV of GC MS and GC 
SAW tests as they varied with DF
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Discussion

The main finding of this study was that volatile biomark-
ers in breath accurately predicted a woman’s risk of breast 
cancer. The risk of disease varied with the numerical value 
of the discriminant function generated by a predictive 
algorithm employing a chromatogram of biomarkers in 
breath. Results were similar when breath samples analyzed 
either with GC MS or with GC SAW: women with a low 
algorithm score value had a low risk of breast cancer and 
a high NPV > 99.9%, while those with a high score value 
had a high risk of breast cancer and a PPV that rose to 
100%.

The values of PPV and NPV were derived from the 
sensitivity and specificity of the breath test observed in 
this study and from the US prevalence of breast cancer 
of 0.32% in the screened population [1–3]. In view of the 
comparatively small size of the study population, the cal-
culated values of PPV and NPV should be regarded with 
caution as preliminary estimates. These estimates will be 
re-evaluated in a larger clinical study that is now in pro-
gress [27].

A novel feature of this study was the use of ultra-clean 
breath balloons to collect samples suitable for assay of 
breath VOCs. Previous studies employing GC analysis to 
detect breath biomarkers of breast cancer have required 
specialized and expensive sorbent trapping devices to 
collect and store technically usable samples with low 
background VOC contamination [14, 15, 28]. In con-
trast, breath VOC collections with ultra-clean bags were 
simple to perform, safe, and comparatively inexpensive. 
These ultra-clean breath balloons are simple to use in low-
technology settings such as an outpatient clinic, a doctor’s 
office, or a patient’s home.

We attempted to minimize potential confounding vari-
ables in the experimental design that might have skewed 
the results of this study. First, we collected breath sam-
ples from both the cancer patients and the cancer-free 
controls in the same room at each site, in order to mini-
mize potential effects of site-dependent variables such as 
ambient room air contamination. Second, we employed 
Monte Carlo analysis of data in order to minimize the risk 
of “voodoo correlations” that may arise by chance alone 
when large numbers of candidate biomarkers are “over-
fitted” to small numbers of experimental subjects, yielding 
results that are statistically true but clinically meaningless 
[29]. Third, we cross-validated the test results by randomly 
splitting the data into training sets to develop the predic-
tive algorithms, and then testing the testing the algorithms 
in independent validation sets.

Despite these precautions, we could not eliminate all 
potential confounding variables. An intrinsic limitation 

of a cross-sectional experimental design is that the results 
are susceptible to demographic and physiological differ-
ences between the two groups. The women with breast 
cancer were older than the cancer-free controls but age did 
not exert a statistically significant effect on the algorithm 
predictions.

Women in the control group were deemed to be cancer-
free on the basis of a normal screening mammogram during 
the preceding 6 months and if they had no breast-related 
symptoms. Women in the disease group were deemed to 
have breast cancer based on the results of a breast biopsy. 
Consequently, it is possible that breath VOCs might also 
have been influenced by factors such as anxiety and breast 
tissue trauma. These, and other potential confounding vari-
ables associated with a cross-sectional experimental design 
could be minimized in a blinded prospective clinical study 
in which breath tests are performed before the diagnosis is 
determined, and such a study is now in progress [27].

The pathophysiologic source of breath VOC biomark-
ers in breast cancer remains hypothetical. As shown in 
Fig. 1, activation of breast stromal fibroblasts may result 
in increased oxidative stress with consequent liberation of 
volatile n-alkanes including ethane and pentane and other 
abnormal metabolic products that are expired in the breath 
[16, 19, 20]. A previous study employing GC MS identi-
fied n-alkanes in breath (nonane, tridecane) and methylated 
derivatives of n-alkanes (5-methyl undecane, 3-methyl pen-
tadecane) as candidate biomarkers of breast cancer [11]. 
Also, headspace analysis of VOCs derived from breast 
cancer cells cultured in vitro has demonstrated a variety 
of unique products, some of which may have arisen from 
induced cytochrome p450 activity [30].

Breast cancer is the most commonly diagnosed cancer in 
women, in whom it is second only to lung cancer as a cause 
of cancer death [31]. The National Cancer Institute estimated 
that more than 232,000 US women would be diagnosed with 
breast cancer in 2013 and nearly 40,000 would die of the 
disease [32]. Breath VOC biomarker analysis offers a new 
approach to screening women for risk of breast cancer; a 
breath test could potentially stratify a screening population 
into groups at low, intermediate, or high risk of breast can-
cer. Breath tests are painless, cost-effective, and completely 
safe, and they could potentially reduce the number of need-
less mammograms that are now performed.
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